GRASS GIS 8 Programmer's Manual  8.5.0dev(2024)-d6dec75dd4
solvers_krylov.c
Go to the documentation of this file.
1 /*****************************************************************************
2  *
3  * MODULE: Grass numerical math interface
4  * AUTHOR(S): Soeren Gebbert, Berlin (GER) Dec 2006
5  * soerengebbert <at> googlemail <dot> com
6  *
7  * PURPOSE: linear equation system solvers
8  * part of the gmath library
9  *
10  * COPYRIGHT: (C) 2010 by the GRASS Development Team
11  *
12  * This program is free software under the GNU General Public
13  * License (>=v2). Read the file COPYING that comes with GRASS
14  * for details.
15  *
16  *****************************************************************************/
17 
18 #include <assert.h>
19 #include <math.h>
20 #include <unistd.h>
21 #include <stdio.h>
22 #include <string.h>
23 #include <grass/gis.h>
24 #include <grass/gmath.h>
25 #include <grass/glocale.h>
26 
27 static G_math_spvector **create_diag_precond_matrix(double **A,
28  G_math_spvector **Asp,
29  int rows, int prec);
30 static int solver_pcg(double **A, G_math_spvector **Asp, double *x, double *b,
31  int rows, int maxit, double err, int prec, int has_band,
32  int bandwidth);
33 static int solver_cg(double **A, G_math_spvector **Asp, double *x, double *b,
34  int rows, int maxit, double err, int has_band,
35  int bandwidth);
36 static int solver_bicgstab(double **A, G_math_spvector **Asp, double *x,
37  double *b, int rows, int maxit, double err);
38 
39 /*!
40  * \brief The iterative preconditioned conjugate gradients solver for symmetric
41  * positive definite matrices
42  *
43  * This iterative solver works with symmetric positive definite regular
44  * quadratic matrices.
45  *
46  * This solver solves the linear equation system:
47  * A x = b
48  *
49  * The parameter <i>maxit</i> specifies the maximum number of iterations. If the
50  * maximum is reached, the solver will abort the calculation and writes the
51  * current result into the vector x. The parameter <i>err</i> defines the error
52  * break criteria for the solver.
53  *
54  * \param A (double **) -- the matrix
55  * \param x (double *) -- the value vector
56  * \param b (double *) -- the right hand side
57  * \param rows (int)
58  * \param maxit (int) -- the maximum number of iterations
59  * \param err (double) -- defines the error break criteria
60  * \param prec (int) -- the preconditioner which should be used 1,2 or 3
61  * \return (int) -- 1 - success, 2 - not finished but success, 0 - matrix
62  * singular, -1 - could not solve the les
63  *
64  * */
65 int G_math_solver_pcg(double **A, double *x, double *b, int rows, int maxit,
66  double err, int prec)
67 {
68 
69  return solver_pcg(A, NULL, x, b, rows, maxit, err, prec, 0, 0);
70 }
71 
72 /*!
73  * \brief The iterative preconditioned conjugate gradients solver for symmetric
74  * positive definite band matrices
75  *
76  * WARNING: The preconditioning of symmetric band matrices is not implemented
77  * yet
78  *
79  * This iterative solver works with symmetric positive definite band matrices.
80  *
81  * This solver solves the linear equation system:
82  * A x = b
83  *
84  * The parameter <i>maxit</i> specifies the maximum number of iterations. If the
85  * maximum is reached, the solver will abort the calculation and writes the
86  * current result into the vector x. The parameter <i>err</i> defines the error
87  * break criteria for the solver.
88  *
89  * \param A (double **) -- the positive definite band matrix
90  * \param x (double *) -- the value vector
91  * \param b (double *) -- the right hand side
92  * \param rows (int)
93  * \param bandwidth (int) -- bandwidth of matrix A
94  * \param maxit (int) -- the maximum number of iterations
95  * \param err (double) -- defines the error break criteria
96  * \param prec (int) -- the preconditioner which should be used 1,2 or 3
97  * \return (int) -- 1 - success, 2 - not finished but success, 0 - matrix
98  * singular, -1 - could not solve the les
99  *
100  * */
101 int G_math_solver_pcg_sband(double **A, double *x, double *b, int rows,
102  int bandwidth, int maxit, double err, int prec)
103 {
104  G_fatal_error("Preconditioning of band matrics is not implemented yet");
105  return solver_pcg(A, NULL, x, b, rows, maxit, err, prec, 1, bandwidth);
106 }
107 
108 /*!
109  * \brief The iterative preconditioned conjugate gradients solver for sparse
110  * symmetric positive definite matrices
111  *
112  * This iterative solver works with symmetric positive definite sparse matrices.
113  *
114  * This solver solves the linear equation system:
115  * A x = b
116  *
117  * The parameter <i>maxit</i> specifies the maximum number of iterations. If the
118  * maximum is reached, the solver will abort the calculation and writes the
119  * current result into the vector x. The parameter <i>err</i> defines the error
120  * break criteria for the solver.
121  *
122  * \param Asp (G_math_spvector **) -- the sparse matrix
123  * \param x (double *) -- the value vector
124  * \param b (double *) -- the right hand side
125  * \param rows (int)
126  * \param maxit (int) -- the maximum number of iterations
127  * \param err (double) -- defines the error break criteria
128  * \param prec (int) -- the preconditioner which should be used 1,2 or 3
129  * \return (int) -- 1 - success, 2 - not finished but success, 0 - matrix
130  * singular, -1 - could not solve the les
131  *
132  * */
133 int G_math_solver_sparse_pcg(G_math_spvector **Asp, double *x, double *b,
134  int rows, int maxit, double err, int prec)
135 {
136 
137  return solver_pcg(NULL, Asp, x, b, rows, maxit, err, prec, 0, 0);
138 }
139 
140 int solver_pcg(double **A, G_math_spvector **Asp, double *x, double *b,
141  int rows, int maxit, double err, int prec, int has_band,
142  int bandwidth)
143 {
144  double *r, *z;
145 
146  double *p;
147 
148  double *v;
149 
150  double s = 0.0;
151 
152  double a0 = 0, a1 = 0, mygamma, tmp = 0;
153 
154  int m, i;
155 
156  int finished = 2;
157 
158  int error_break;
159 
160  G_math_spvector **M;
161 
162  r = G_alloc_vector(rows);
163  p = G_alloc_vector(rows);
164  v = G_alloc_vector(rows);
165  z = G_alloc_vector(rows);
166 
167  error_break = 0;
168 
169  /*compute the preconditioning matrix, this is a sparse matrix */
170  M = create_diag_precond_matrix(A, Asp, rows, prec);
171 
172  /*
173  * residual calculation
174  */
175 #pragma omp parallel
176  {
177  if (Asp)
178  G_math_Ax_sparse(Asp, x, v, rows);
179  else if (has_band)
180  G_math_Ax_sband(A, x, v, rows, bandwidth);
181  else
182  G_math_d_Ax(A, x, v, rows, rows);
183 
184  G_math_d_ax_by(b, v, r, 1.0, -1.0, rows);
185  /*perform the preconditioning */
186  G_math_Ax_sparse(M, r, p, rows);
187 
188  /* scalar product */
189 #pragma omp for schedule(static) private(i) reduction(+ : s)
190  for (i = 0; i < rows; i++) {
191  s += p[i] * r[i];
192  }
193  }
194 
195  a0 = s;
196  s = 0.0;
197 
198  /* ******************* */
199  /* start the iteration */
200  /* ******************* */
201  for (m = 0; m < maxit; m++) {
202 #pragma omp parallel default(shared)
203  {
204  if (Asp)
205  G_math_Ax_sparse(Asp, p, v, rows);
206  else if (has_band)
207  G_math_Ax_sband(A, p, v, rows, bandwidth);
208  else
209  G_math_d_Ax(A, p, v, rows, rows);
210 
211  /* scalar product */
212 #pragma omp for schedule(static) private(i) reduction(+ : s)
213  for (i = 0; i < rows; i++) {
214  s += v[i] * p[i];
215  }
216 
217  /* barrier */
218 #pragma omp single
219  {
220  tmp = s;
221  mygamma = a0 / tmp;
222  s = 0.0;
223  }
224 
225  G_math_d_ax_by(p, x, x, mygamma, 1.0, rows);
226 
227  if (m % 50 == 1) {
228  if (Asp)
229  G_math_Ax_sparse(Asp, x, v, rows);
230  else if (has_band)
231  G_math_Ax_sband(A, x, v, rows, bandwidth);
232  else
233  G_math_d_Ax(A, x, v, rows, rows);
234 
235  G_math_d_ax_by(b, v, r, 1.0, -1.0, rows);
236  }
237  else {
238  G_math_d_ax_by(r, v, r, 1.0, -1.0 * mygamma, rows);
239  }
240 
241  /*perform the preconditioning */
242  G_math_Ax_sparse(M, r, z, rows);
243 
244  /* scalar product */
245 #pragma omp for schedule(static) private(i) reduction(+ : s)
246  for (i = 0; i < rows; i++) {
247  s += z[i] * r[i];
248  }
249 
250  /* barrier */
251 #pragma omp single
252  {
253  a1 = s;
254  tmp = a1 / a0;
255  a0 = a1;
256  s = 0.0;
257 
258  if (a1 < 0 || a1 == 0 || a1 > 0) {
259  ;
260  }
261  else {
262  G_warning(_("Unable to solve the linear equation system"));
263  error_break = 1;
264  }
265  }
266  G_math_d_ax_by(p, z, p, tmp, 1.0, rows);
267  }
268 
269  if (Asp != NULL)
270  G_message(_("Sparse PCG -- iteration %i error %g\n"), m, a0);
271  else
272  G_message(_("PCG -- iteration %i error %g\n"), m, a0);
273 
274  if (error_break == 1) {
275  finished = -1;
276  break;
277  }
278 
279  if (a0 < err) {
280  finished = 1;
281  break;
282  }
283  }
284 
285  G_free(r);
286  G_free(p);
287  G_free(v);
288  G_free(z);
289  G_math_free_spmatrix(M, rows);
290 
291  return finished;
292 }
293 
294 /*!
295  * \brief The iterative conjugate gradients solver for symmetric positive
296  * definite matrices
297  *
298  * This iterative solver works with symmetric positive definite regular
299  * quadratic matrices.
300  *
301  * This solver solves the linear equation system:
302  * A x = b
303  *
304  * The parameter <i>maxit</i> specifies the maximum number of iterations. If the
305  * maximum is reached, the solver will abort the calculation and writes the
306  * current result into the vector x. The parameter <i>err</i> defines the error
307  * break criteria for the solver.
308  *
309  * \param A (double **) -- the matrix
310  * \param x (double *) -- the value vector
311  * \param b (double *) -- the right hand side
312  * \param rows (int)
313  * \param maxit (int) -- the maximum number of iterations
314  * \param err (double) -- defines the error break criteria
315  * \return (int) -- 1 - success, 2 - not finished but success, 0 - matrix
316  * singular, -1 - could not solve the les
317  *
318  * */
319 int G_math_solver_cg(double **A, double *x, double *b, int rows, int maxit,
320  double err)
321 {
322  return solver_cg(A, NULL, x, b, rows, maxit, err, 0, 0);
323 }
324 
325 /*!
326  * \brief The iterative conjugate gradients solver for symmetric positive
327  * definite band matrices
328  *
329  * This iterative solver works with symmetric positive definite band matrices.
330  *
331  * This solver solves the linear equation system:
332  * A x = b
333  *
334  * The parameter <i>maxit</i> specifies the maximum number of iterations. If the
335  * maximum is reached, the solver will abort the calculation and writes the
336  * current result into the vector x. The parameter <i>err</i> defines the error
337  * break criteria for the solver.
338  *
339  * \param A (double **) -- the symmetric positive definite band matrix
340  * \param x (double *) -- the value vector
341  * \param b (double *) -- the right hand side
342  * \param rows (int)
343  * \param bandwidth (int) -- the bandwidth of matrix A
344  * \param maxit (int) -- the maximum number of iterations
345  * \param err (double) -- defines the error break criteria
346  * \return (int) -- 1 - success, 2 - not finished but success, 0 - matrix
347  * singular, -1 - could not solve the les
348  *
349  * */
350 int G_math_solver_cg_sband(double **A, double *x, double *b, int rows,
351  int bandwidth, int maxit, double err)
352 {
353  return solver_cg(A, NULL, x, b, rows, maxit, err, 1, bandwidth);
354 }
355 
356 /*!
357  * \brief The iterative conjugate gradients solver for sparse symmetric positive
358  * definite matrices
359  *
360  * This iterative solver works with symmetric positive definite sparse matrices.
361  *
362  * This solver solves the linear equation system:
363  * A x = b
364  *
365  * The parameter <i>maxit</i> specifies the maximum number of iterations. If the
366  * maximum is reached, the solver will abort the calculation and writes the
367  * current result into the vector x. The parameter <i>err</i> defines the error
368  * break criteria for the solver.
369  *
370  * \param Asp (G_math_spvector **) -- the sparse matrix
371  * \param x (double *) -- the value vector
372  * \param b (double *) -- the right hand side
373  * \param rows (int)
374  * \param maxit (int) -- the maximum number of iterations
375  * \param err (double) -- defines the error break criteria
376  * \return (int) -- 1 - success, 2 - not finished but success, 0 - matrix
377  * singular, -1 - could not solve the les
378  *
379  * */
380 int G_math_solver_sparse_cg(G_math_spvector **Asp, double *x, double *b,
381  int rows, int maxit, double err)
382 {
383  return solver_cg(NULL, Asp, x, b, rows, maxit, err, 0, 0);
384 }
385 
386 int solver_cg(double **A, G_math_spvector **Asp, double *x, double *b, int rows,
387  int maxit, double err, int has_band, int bandwidth)
388 {
389  double *r;
390 
391  double *p;
392 
393  double *v;
394 
395  double s = 0.0;
396 
397  double a0 = 0, a1 = 0, mygamma, tmp = 0;
398 
399  int m, i;
400 
401  int finished = 2;
402 
403  int error_break;
404 
405  r = G_alloc_vector(rows);
406  p = G_alloc_vector(rows);
407  v = G_alloc_vector(rows);
408 
409  error_break = 0;
410  /*
411  * residual calculation
412  */
413 #pragma omp parallel
414  {
415  if (Asp)
416  G_math_Ax_sparse(Asp, x, v, rows);
417  else if (has_band)
418  G_math_Ax_sband(A, x, v, rows, bandwidth);
419  else
420  G_math_d_Ax(A, x, v, rows, rows);
421 
422  G_math_d_ax_by(b, v, r, 1.0, -1.0, rows);
423  G_math_d_copy(r, p, rows);
424 
425  /* scalar product */
426 #pragma omp for schedule(static) private(i) reduction(+ : s)
427  for (i = 0; i < rows; i++) {
428  s += r[i] * r[i];
429  }
430  }
431 
432  a0 = s;
433  s = 0.0;
434 
435  /* ******************* */
436  /* start the iteration */
437  /* ******************* */
438  for (m = 0; m < maxit; m++) {
439 #pragma omp parallel default(shared)
440  {
441  if (Asp)
442  G_math_Ax_sparse(Asp, p, v, rows);
443  else if (has_band)
444  G_math_Ax_sband(A, p, v, rows, bandwidth);
445  else
446  G_math_d_Ax(A, p, v, rows, rows);
447 
448  /* scalar product */
449 #pragma omp for schedule(static) private(i) reduction(+ : s)
450  for (i = 0; i < rows; i++) {
451  s += v[i] * p[i];
452  }
453 
454  /* barrier */
455 #pragma omp single
456  {
457  tmp = s;
458  mygamma = a0 / tmp;
459  s = 0.0;
460  }
461 
462  G_math_d_ax_by(p, x, x, mygamma, 1.0, rows);
463 
464  if (m % 50 == 1) {
465  if (Asp)
466  G_math_Ax_sparse(Asp, x, v, rows);
467  else if (has_band)
468  G_math_Ax_sband(A, x, v, rows, bandwidth);
469  else
470  G_math_d_Ax(A, x, v, rows, rows);
471 
472  G_math_d_ax_by(b, v, r, 1.0, -1.0, rows);
473  }
474  else {
475  G_math_d_ax_by(r, v, r, 1.0, -1.0 * mygamma, rows);
476  }
477 
478  /* scalar product */
479 #pragma omp for schedule(static) private(i) reduction(+ : s)
480  for (i = 0; i < rows; i++) {
481  s += r[i] * r[i];
482  }
483 
484  /* barrier */
485 #pragma omp single
486  {
487  a1 = s;
488  tmp = a1 / a0;
489  a0 = a1;
490  s = 0.0;
491 
492  if (a1 < 0 || a1 == 0 || a1 > 0) {
493  ;
494  }
495  else {
496  G_warning(_("Unable to solve the linear equation system"));
497  error_break = 1;
498  }
499  }
500  G_math_d_ax_by(p, r, p, tmp, 1.0, rows);
501  }
502 
503  if (Asp != NULL)
504  G_message(_("Sparse CG -- iteration %i error %g\n"), m, a0);
505  else
506  G_message(_("CG -- iteration %i error %g\n"), m, a0);
507 
508  if (error_break == 1) {
509  finished = -1;
510  break;
511  }
512 
513  if (a0 < err) {
514  finished = 1;
515  break;
516  }
517  }
518 
519  G_free(r);
520  G_free(p);
521  G_free(v);
522 
523  return finished;
524 }
525 
526 /*!
527  * \brief The iterative biconjugate gradients solver with stabilization for
528  * unsymmetric non-definite matrices
529  *
530  * This iterative solver works with regular quadratic matrices.
531  *
532  * This solver solves the linear equation system:
533  * A x = b
534  *
535  * The parameter <i>maxit</i> specifies the maximum number of iterations. If the
536  * maximum is reached, the solver will abort the calculation and writes the
537  * current result into the vector x. The parameter <i>err</i> defines the error
538  * break criteria for the solver.
539  *
540  * \param A (double **) -- the matrix
541  * \param x (double *) -- the value vector
542  * \param b (double *) -- the right hand side
543  * \param rows (int)
544  * \param maxit (int) -- the maximum number of iterations
545  * \param err (double) -- defines the error break criteria
546  * \return (int) -- 1 - success, 2 - not finished but success, 0 - matrix
547  * singular, -1 - could not solve the les
548  *
549  * */
550 int G_math_solver_bicgstab(double **A, double *x, double *b, int rows,
551  int maxit, double err)
552 {
553  return solver_bicgstab(A, NULL, x, b, rows, maxit, err);
554 }
555 
556 /*!
557  * \brief The iterative biconjugate gradients solver with stabilization for
558  * unsymmetric non-definite matrices
559  *
560  * This iterative solver works with sparse matrices.
561  *
562  * This solver solves the linear equation system:
563  * A x = b
564  *
565  * The parameter <i>maxit</i> specifies the maximum number of iterations. If the
566  * maximum is reached, the solver will abort the calculation and writes the
567  * current result into the vector x. The parameter <i>err</i> defines the error
568  * break criteria for the solver.
569  *
570  * \param Asp (G_math_spvector **) -- the sparse matrix
571  * \param x (double *) -- the value vector
572  * \param b (double *) -- the right hand side
573  * \param rows (int)
574  * \param maxit (int) -- the maximum number of iterations
575  * \param err (double) -- defines the error break criteria
576  * \return (int) -- 1 - success, 2 - not finished but success, 0 - matrix
577  * singular, -1 - could not solve the les
578  *
579  * */
580 int G_math_solver_sparse_bicgstab(G_math_spvector **Asp, double *x, double *b,
581  int rows, int maxit, double err)
582 {
583  return solver_bicgstab(NULL, Asp, x, b, rows, maxit, err);
584 }
585 
586 int solver_bicgstab(double **A, G_math_spvector **Asp, double *x, double *b,
587  int rows, int maxit, double err)
588 {
589  double *r;
590 
591  double *r0;
592 
593  double *p;
594 
595  double *v;
596 
597  double *s;
598 
599  double *t;
600 
601  double s1 = 0.0, s2 = 0.0, s3 = 0.0;
602 
603  double alpha = 0, beta = 0, omega, rr0 = 0, error;
604 
605  int m, i;
606 
607  int finished = 2;
608 
609  int error_break;
610 
611  r = G_alloc_vector(rows);
612  r0 = G_alloc_vector(rows);
613  p = G_alloc_vector(rows);
614  v = G_alloc_vector(rows);
615  s = G_alloc_vector(rows);
616  t = G_alloc_vector(rows);
617 
618  error_break = 0;
619 
620 #pragma omp parallel
621  {
622  if (Asp)
623  G_math_Ax_sparse(Asp, x, v, rows);
624  else
625  G_math_d_Ax(A, x, v, rows, rows);
626 
627  G_math_d_ax_by(b, v, r, 1.0, -1.0, rows);
628  G_math_d_copy(r, r0, rows);
629  G_math_d_copy(r, p, rows);
630  }
631 
632  s1 = s2 = s3 = 0.0;
633 
634  /* ******************* */
635  /* start the iteration */
636  /* ******************* */
637  for (m = 0; m < maxit; m++) {
638 
639 #pragma omp parallel default(shared)
640  {
641  if (Asp)
642  G_math_Ax_sparse(Asp, p, v, rows);
643  else
644  G_math_d_Ax(A, p, v, rows, rows);
645 
646  /* scalar product */
647 #pragma omp for schedule(static) private(i) reduction(+ : s1, s2, s3)
648  for (i = 0; i < rows; i++) {
649  s1 += r[i] * r[i];
650  s2 += r[i] * r0[i];
651  s3 += v[i] * r0[i];
652  }
653 
654 #pragma omp single
655  {
656  error = s1;
657 
658  if (error < 0 || error == 0 || error > 0) {
659  ;
660  }
661  else {
662  G_warning(_("Unable to solve the linear equation system"));
663  error_break = 1;
664  }
665 
666  rr0 = s2;
667  alpha = rr0 / s3;
668  s1 = s2 = s3 = 0.0;
669  }
670 
671  G_math_d_ax_by(r, v, s, 1.0, -1.0 * alpha, rows);
672  if (Asp)
673  G_math_Ax_sparse(Asp, s, t, rows);
674  else
675  G_math_d_Ax(A, s, t, rows, rows);
676 
677  /* scalar product */
678 #pragma omp for schedule(static) private(i) reduction(+ : s1, s2)
679  for (i = 0; i < rows; i++) {
680  s1 += t[i] * s[i];
681  s2 += t[i] * t[i];
682  }
683 
684 #pragma omp single
685  {
686  omega = s1 / s2;
687  s1 = s2 = 0.0;
688  }
689 
690  G_math_d_ax_by(p, s, r, alpha, omega, rows);
691  G_math_d_ax_by(x, r, x, 1.0, 1.0, rows);
692  G_math_d_ax_by(s, t, r, 1.0, -1.0 * omega, rows);
693 
694 #pragma omp for schedule(static) private(i) reduction(+ : s1)
695  for (i = 0; i < rows; i++) {
696  s1 += r[i] * r0[i];
697  }
698 
699 #pragma omp single
700  {
701  beta = alpha / omega * s1 / rr0;
702  s1 = s2 = s3 = 0.0;
703  }
704 
705  G_math_d_ax_by(p, v, p, 1.0, -1.0 * omega, rows);
706  G_math_d_ax_by(p, r, p, beta, 1.0, rows);
707  }
708 
709  if (Asp != NULL)
710  G_message(_("Sparse BiCGStab -- iteration %i error %g\n"), m,
711  error);
712  else
713  G_message(_("BiCGStab -- iteration %i error %g\n"), m, error);
714 
715  if (error_break == 1) {
716  finished = -1;
717  break;
718  }
719 
720  if (error < err) {
721  finished = 1;
722  break;
723  }
724  }
725 
726  G_free(r);
727  G_free(r0);
728  G_free(p);
729  G_free(v);
730  G_free(s);
731  G_free(t);
732 
733  return finished;
734 }
735 
736 /*!
737  * \brief Compute a diagonal preconditioning matrix for krylov space solver
738  *
739  * \param A (double **) -- the matrix for which the precondition should be
740  * computed (if the sparse matrix is used, set it to NULL) \param Asp
741  * (G_math_spvector **) -- the matrix for which the precondition should be
742  * computed \param rows (int) \param prec (int) -- which preconditioner should
743  * be used 1, 2 or 3
744  *
745  * */
746 G_math_spvector **create_diag_precond_matrix(double **A, G_math_spvector **Asp,
747  int rows, int prec)
748 {
749  G_math_spvector **Msp;
750 
751  unsigned int i, j, cols = (unsigned int)rows;
752 
753  double sum;
754 
755  assert(rows >= 0);
756 
757  Msp = G_math_alloc_spmatrix(rows);
758 
759  if (A != NULL) {
760 #pragma omp parallel for schedule(static) private(i, j, sum) \
761  shared(A, Msp, rows, cols, prec)
762  for (i = 0; i < (unsigned int)rows; i++) {
764 
765  switch (prec) {
767  sum = 0;
768  for (j = 0; j < cols; j++)
769  sum += A[i][j] * A[i][j];
770  spvect->values[0] = 1.0 / sqrt(sum);
771  break;
773  sum = 0;
774  for (j = 0; j < cols; j++)
775  sum += fabs(A[i][j]);
776  spvect->values[0] = 1.0 / (sum);
777  break;
779  default:
780  spvect->values[0] = 1.0 / A[i][i];
781  break;
782  }
783 
784  spvect->index[0] = i;
785  spvect->cols = 1;
786  ;
787  G_math_add_spvector(Msp, spvect, i);
788  }
789  }
790  else {
791 #pragma omp parallel for schedule(static) private(i, j, sum) \
792  shared(Asp, Msp, rows, cols, prec)
793  for (i = 0; i < (unsigned int)rows; i++) {
795 
796  switch (prec) {
798  sum = 0;
799  for (j = 0; j < Asp[i]->cols; j++)
800  sum += Asp[i]->values[j] * Asp[i]->values[j];
801  spvect->values[0] = 1.0 / sqrt(sum);
802  break;
804  sum = 0;
805  for (j = 0; j < Asp[i]->cols; j++)
806  sum += fabs(Asp[i]->values[j]);
807  spvect->values[0] = 1.0 / (sum);
808  break;
810  default:
811  for (j = 0; j < Asp[i]->cols; j++)
812  if (i == Asp[i]->index[j])
813  spvect->values[0] = 1.0 / Asp[i]->values[j];
814  break;
815  }
816 
817  spvect->index[0] = i;
818  spvect->cols = 1;
819  ;
820  G_math_add_spvector(Msp, spvect, i);
821  }
822  }
823  return Msp;
824 }
#define NULL
Definition: ccmath.h:32
void G_free(void *)
Free allocated memory.
Definition: gis/alloc.c:150
void void void void G_fatal_error(const char *,...) __attribute__((format(printf
void G_warning(const char *,...) __attribute__((format(printf
void G_message(const char *,...) __attribute__((format(printf
void G_math_d_ax_by(double *, double *, double *, double, double, int)
Scales vectors x and y with the scalars a and b and adds them.
Definition: blas_level_1.c:173
void G_math_Ax_sband(double **A, double *x, double *y, int rows, int bandwidth)
Compute the matrix - vector product of symmetric band matrix A and vector x.
G_math_spvector * G_math_alloc_spvector(int)
Allocate memory for a sparse vector.
Definition: sparse_matrix.c:77
void G_math_free_spmatrix(G_math_spvector **, int)
Release the memory of the sparse matrix.
double * G_alloc_vector(size_t)
Vector matrix memory allocation.
Definition: dalloc.c:39
void G_math_Ax_sparse(G_math_spvector **, double *, double *, int)
Compute the matrix - vector product of sparse matrix **Asp and vector x.
int G_math_add_spvector(G_math_spvector **, G_math_spvector *, int)
Adds a sparse vector to a sparse matrix at position row.
Definition: sparse_matrix.c:35
G_math_spvector ** G_math_alloc_spmatrix(int)
Allocate memory for a sparse matrix.
Definition: sparse_matrix.c:59
void G_math_d_Ax(double **, double *, double *, int, int)
Compute the matrix - vector product of matrix A and vector x.
Definition: blas_level_2.c:46
void G_math_d_copy(double *, double *, int)
Copy the vector x to y.
Definition: blas_level_1.c:237
#define M(row, col)
Definition: georef.c:46
#define _(str)
Definition: glocale.h:10
#define G_MATH_ROWSCALE_ABSSUMNORM_PRECONDITION
Definition: gmath.h:47
#define G_MATH_ROWSCALE_EUKLIDNORM_PRECONDITION
Definition: gmath.h:48
#define G_MATH_DIAGONAL_PRECONDITION
Definition: gmath.h:46
#define assert(condition)
Definition: lz4.c:291
double b
Definition: r_raster.c:39
double t
Definition: r_raster.c:39
double r
Definition: r_raster.c:39
int G_math_solver_pcg(double **A, double *x, double *b, int rows, int maxit, double err, int prec)
The iterative preconditioned conjugate gradients solver for symmetric positive definite matrices.
int G_math_solver_cg(double **A, double *x, double *b, int rows, int maxit, double err)
The iterative conjugate gradients solver for symmetric positive definite matrices.
int G_math_solver_bicgstab(double **A, double *x, double *b, int rows, int maxit, double err)
The iterative biconjugate gradients solver with stabilization for unsymmetric non-definite matrices.
int G_math_solver_sparse_cg(G_math_spvector **Asp, double *x, double *b, int rows, int maxit, double err)
The iterative conjugate gradients solver for sparse symmetric positive definite matrices.
int G_math_solver_cg_sband(double **A, double *x, double *b, int rows, int bandwidth, int maxit, double err)
The iterative conjugate gradients solver for symmetric positive definite band matrices.
int G_math_solver_pcg_sband(double **A, double *x, double *b, int rows, int bandwidth, int maxit, double err, int prec)
The iterative preconditioned conjugate gradients solver for symmetric positive definite band matrices...
int G_math_solver_sparse_bicgstab(G_math_spvector **Asp, double *x, double *b, int rows, int maxit, double err)
The iterative biconjugate gradients solver with stabilization for unsymmetric non-definite matrices.
int G_math_solver_sparse_pcg(G_math_spvector **Asp, double *x, double *b, int rows, int maxit, double err, int prec)
The iterative preconditioned conjugate gradients solver for sparse symmetric positive definite matric...
The row vector of the sparse matrix.
Definition: gmath.h:54
double * values
Definition: gmath.h:55
unsigned int cols
Definition: gmath.h:56
unsigned int * index
Definition: gmath.h:57
SYMBOL * err(FILE *fp, SYMBOL *s, char *msg)
Definition: symbol/read.c:216
#define x