GRASS GIS 8 Programmer's Manual  8.5.0dev(2024)-ed80a6eaeb
n_gwflow.c
Go to the documentation of this file.
1 /*****************************************************************************
2  *
3  * MODULE: Grass PDE Numerical Library
4  * AUTHOR(S): Soeren Gebbert, Berlin (GER) Dec 2006
5  * soerengebbert <at> gmx <dot> de
6  *
7  * PURPOSE: groundwater flow in porous media
8  * part of the gpde library
9  *
10  * COPYRIGHT: (C) 2000 by the GRASS Development Team
11  *
12  * This program is free software under the GNU General Public
13  * License (>=v2). Read the file COPYING that comes with GRASS
14  * for details.
15  *
16  *****************************************************************************/
17 
18 #include <grass/N_gwflow.h>
19 
20 /* *************************************************************** */
21 /* ***************** N_gwflow_data3d ***************************** */
22 /* *************************************************************** */
23 /*!
24  * \brief Allocate memory for the groundwater calculation data structure in 3
25  * dimensions
26  *
27  * The groundwater calculation data structure will be allocated including
28  * all appendant 3d and 2d arrays. The offset for the 3d arrays is one
29  * to establish homogeneous Neumann boundary conditions at the calculation area
30  * border. This data structure is used to create a linear equation system based
31  * on the computation of groundwater flow in porous media with the finite volume
32  * method.
33  *
34  * \param cols int
35  * \param rows int
36  * \param depths int
37  * \return N_gwflow_data3d *
38  * */
39 N_gwflow_data3d *N_alloc_gwflow_data3d(int cols, int rows, int depths,
40  int river, int drain)
41 {
42  N_gwflow_data3d *data;
43 
44  data = (N_gwflow_data3d *)G_calloc(1, sizeof(N_gwflow_data3d));
45 
46  data->phead = N_alloc_array_3d(cols, rows, depths, 1, DCELL_TYPE);
47  data->phead_start = N_alloc_array_3d(cols, rows, depths, 1, DCELL_TYPE);
48  data->status = N_alloc_array_3d(cols, rows, depths, 1, DCELL_TYPE);
49  data->hc_x = N_alloc_array_3d(cols, rows, depths, 1, DCELL_TYPE);
50  data->hc_y = N_alloc_array_3d(cols, rows, depths, 1, DCELL_TYPE);
51  data->hc_z = N_alloc_array_3d(cols, rows, depths, 1, DCELL_TYPE);
52  data->q = N_alloc_array_3d(cols, rows, depths, 1, DCELL_TYPE);
53  data->s = N_alloc_array_3d(cols, rows, depths, 1, DCELL_TYPE);
54  data->nf = N_alloc_array_3d(cols, rows, depths, 1, DCELL_TYPE);
55  data->r = N_alloc_array_2d(cols, rows, 1, DCELL_TYPE);
56 
57  if (river) {
58  data->river_head = N_alloc_array_3d(cols, rows, depths, 1, DCELL_TYPE);
59  data->river_leak = N_alloc_array_3d(cols, rows, depths, 1, DCELL_TYPE);
60  data->river_bed = N_alloc_array_3d(cols, rows, depths, 1, DCELL_TYPE);
61  }
62  else {
63  data->river_head = NULL;
64  data->river_leak = NULL;
65  data->river_bed = NULL;
66  }
67 
68  if (drain) {
69  data->drain_leak = N_alloc_array_3d(cols, rows, depths, 1, DCELL_TYPE);
70  data->drain_bed = N_alloc_array_3d(cols, rows, depths, 1, DCELL_TYPE);
71  }
72  else {
73  data->drain_leak = NULL;
74  data->drain_bed = NULL;
75  }
76 
77  return data;
78 }
79 
80 /* *************************************************************** */
81 /* ********************* N_free_gwflow_data3d ******************** */
82 /* *************************************************************** */
83 /*!
84  * \brief Release the memory of the groundwater flow data structure in three
85  * dimensions
86  *
87  * \param data N_gwflow_data3d *
88  * \return void *
89  * */
90 
92 {
93  if (data->phead)
94  N_free_array_3d(data->phead);
95  if (data->phead_start)
97  if (data->status)
98  N_free_array_3d(data->status);
99  if (data->hc_x)
100  N_free_array_3d(data->hc_x);
101  if (data->hc_y)
102  N_free_array_3d(data->hc_y);
103  if (data->hc_z)
104  N_free_array_3d(data->hc_z);
105  if (data->q)
106  N_free_array_3d(data->q);
107  if (data->s)
108  N_free_array_3d(data->s);
109  if (data->nf)
110  N_free_array_3d(data->nf);
111  if (data->r)
112  N_free_array_2d(data->r);
113  if (data->river_head)
115  if (data->river_leak)
117  if (data->river_bed)
118  N_free_array_3d(data->river_bed);
119  if (data->drain_leak)
121  if (data->drain_bed)
122  N_free_array_3d(data->drain_bed);
123 
124  G_free(data);
125 
126  data = NULL;
127 
128  return;
129 }
130 
131 /* *************************************************************** */
132 /* ******************** N_alloc_gwflow_data2d ******************** */
133 /* *************************************************************** */
134 /*!
135  * \brief Allocate memory for the groundwater calculation data structure in 2
136  * dimensions
137  *
138  * The groundwater calculation data structure will be allocated including
139  * all appendant 2d arrays. The offset for the 3d arrays is one
140  * to establish homogeneous Neumann boundary conditions at the calculation area
141  * border. This data structure is used to create a linear equation system based
142  * on the computation of groundwater flow in porous media with the finite volume
143  * method.
144  *
145  * \param cols int
146  * \param rows int
147  * \return N_gwflow_data2d *
148  * */
149 N_gwflow_data2d *N_alloc_gwflow_data2d(int cols, int rows, int river, int drain)
150 {
151  N_gwflow_data2d *data;
152 
153  data = (N_gwflow_data2d *)G_calloc(1, sizeof(N_gwflow_data2d));
154 
155  data->phead = N_alloc_array_2d(cols, rows, 1, DCELL_TYPE);
156  data->phead_start = N_alloc_array_2d(cols, rows, 1, DCELL_TYPE);
157  data->status = N_alloc_array_2d(cols, rows, 1, CELL_TYPE);
158  data->hc_x = N_alloc_array_2d(cols, rows, 1, DCELL_TYPE);
159  data->hc_y = N_alloc_array_2d(cols, rows, 1, DCELL_TYPE);
160  data->q = N_alloc_array_2d(cols, rows, 1, DCELL_TYPE);
161  data->s = N_alloc_array_2d(cols, rows, 1, DCELL_TYPE);
162  data->nf = N_alloc_array_2d(cols, rows, 1, DCELL_TYPE);
163  data->r = N_alloc_array_2d(cols, rows, 1, DCELL_TYPE);
164  data->top = N_alloc_array_2d(cols, rows, 1, DCELL_TYPE);
165  data->bottom = N_alloc_array_2d(cols, rows, 1, DCELL_TYPE);
166 
167  if (river) {
168  data->river_head = N_alloc_array_2d(cols, rows, 1, DCELL_TYPE);
169  data->river_leak = N_alloc_array_2d(cols, rows, 1, DCELL_TYPE);
170  data->river_bed = N_alloc_array_2d(cols, rows, 1, DCELL_TYPE);
171  }
172  else {
173  data->river_head = NULL;
174  data->river_leak = NULL;
175  data->river_bed = NULL;
176  }
177 
178  if (drain) {
179  data->drain_leak = N_alloc_array_2d(cols, rows, 1, DCELL_TYPE);
180  data->drain_bed = N_alloc_array_2d(cols, rows, 1, DCELL_TYPE);
181  }
182  else {
183  data->drain_leak = NULL;
184  data->drain_bed = NULL;
185  }
186 
187  return data;
188 }
189 
190 /* *************************************************************** */
191 /* ****************** N_free_gwflow_data2d *********************** */
192 /* *************************************************************** */
193 /*!
194  * \brief Release the memory of the groundwater flow data structure in two
195  * dimensions
196  *
197  * \param data N_gwflow_data2d *
198  * \return void
199  * */
201 {
202  if (data->phead)
203  N_free_array_2d(data->phead);
204  if (data->phead_start)
206  if (data->status)
207  N_free_array_2d(data->status);
208  if (data->hc_x)
209  N_free_array_2d(data->hc_x);
210  if (data->hc_y)
211  N_free_array_2d(data->hc_y);
212  if (data->q)
213  N_free_array_2d(data->q);
214  if (data->s)
215  N_free_array_2d(data->s);
216  if (data->nf)
217  N_free_array_2d(data->nf);
218  if (data->r)
219  N_free_array_2d(data->r);
220  if (data->top)
221  N_free_array_2d(data->top);
222  if (data->bottom)
223  N_free_array_2d(data->bottom);
224  if (data->river_head)
226  if (data->river_leak)
228  if (data->river_bed)
229  N_free_array_2d(data->river_bed);
230  if (data->drain_leak)
232  if (data->drain_bed)
233  N_free_array_2d(data->drain_bed);
234 
235  G_free(data);
236 
237  data = NULL;
238  ;
239 
240  return;
241 }
242 
243 /* *************************************************************** */
244 /* ***************** N_callback_gwflow_3d ************************ */
245 /* *************************************************************** */
246 /*!
247  * \brief This callback function creates the mass balance of a 7 point star
248  *
249  * The mass balance is based on the common groundwater flow equation:
250  *
251  * \f[Ss \frac{\partial h}{\partial t} = \nabla {\bf K} \nabla h + q \f]
252  *
253  * This equation is discretizised with the finite volume method in three
254  * dimensions.
255  *
256  *
257  * \param gwdata N_gwflow_data3d *
258  * \param geom N_geom_data *
259  * \param col int
260  * \param row int
261  * \param depth int
262  * \return N_data_star *
263  *
264  * */
265 N_data_star *N_callback_gwflow_3d(void *gwdata, N_geom_data *geom, int col,
266  int row, int depth)
267 {
268  double hc_e = 0, hc_w = 0, hc_n = 0, hc_s = 0, hc_t = 0, hc_b = 0;
269  double dx, dy, dz, Ax, Ay, Az;
270  double hc_x, hc_y, hc_z;
271  double hc_xw, hc_yn, hc_zt;
272  double hc_xe, hc_ys, hc_zb;
273  double hc_start;
274  double Ss, r, /* nf, */ q;
275  double C, W, E, N, S, T, B, V;
276  N_data_star *mat_pos;
277  N_gwflow_data3d *data;
278 
279  /*cast the void pointer to the right data structure */
280  data = (N_gwflow_data3d *)gwdata;
281 
282  dx = geom->dx;
283  dy = geom->dy;
284  dz = geom->dz;
285  Az = N_get_geom_data_area_of_cell(geom, row);
286  Ay = geom->dx * geom->dz;
287  Ax = geom->dz * geom->dy;
288 
289  /*read the data from the arrays */
290  hc_start = N_get_array_3d_d_value(data->phead_start, col, row, depth);
291 
292  hc_x = N_get_array_3d_d_value(data->hc_x, col, row, depth);
293  hc_y = N_get_array_3d_d_value(data->hc_y, col, row, depth);
294  hc_z = N_get_array_3d_d_value(data->hc_z, col, row, depth);
295 
296  hc_xw = N_get_array_3d_d_value(data->hc_x, col - 1, row, depth);
297  hc_xe = N_get_array_3d_d_value(data->hc_x, col + 1, row, depth);
298  hc_yn = N_get_array_3d_d_value(data->hc_y, col, row - 1, depth);
299  hc_ys = N_get_array_3d_d_value(data->hc_y, col, row + 1, depth);
300  hc_zt = N_get_array_3d_d_value(data->hc_z, col, row, depth + 1);
301  hc_zb = N_get_array_3d_d_value(data->hc_z, col, row, depth - 1);
302 
303  hc_w = N_calc_harmonic_mean(hc_xw, hc_x);
304  hc_e = N_calc_harmonic_mean(hc_xe, hc_x);
305  hc_n = N_calc_harmonic_mean(hc_yn, hc_y);
306  hc_s = N_calc_harmonic_mean(hc_ys, hc_y);
307  hc_t = N_calc_harmonic_mean(hc_zt, hc_z);
308  hc_b = N_calc_harmonic_mean(hc_zb, hc_z);
309 
310  /*inner sources */
311  q = N_get_array_3d_d_value(data->q, col, row, depth);
312  /*storativity */
313  Ss = N_get_array_3d_d_value(data->s, col, row, depth);
314  /*porosity */
315  /* nf = N_get_array_3d_d_value(data->nf, col, row, depth); */
316 
317  /*mass balance center cell to western cell */
318  W = -1 * Ax * hc_w / dx;
319  /*mass balance center cell to eastern cell */
320  E = -1 * Ax * hc_e / dx;
321  /*mass balance center cell to northern cell */
322  N = -1 * Ay * hc_n / dy;
323  /*mass balance center cell to southern cell */
324  S = -1 * Ay * hc_s / dy;
325  /*mass balance center cell to top cell */
326  T = -1 * Az * hc_t / dz;
327  /*mass balance center cell to bottom cell */
328  B = -1 * Az * hc_b / dz;
329 
330  /*storativity */
331  Ss = Az * dz * Ss;
332 
333  /*the diagonal entry of the matrix */
334  C = -1 * (W + E + N + S + T + B - Ss / data->dt * Az);
335 
336  /*the entry in the right side b of Ax = b */
337  V = (q + hc_start * Ss / data->dt * Az);
338 
339  /*only the top cells will have recharge */
340  if (depth == geom->depths - 2) {
341  r = N_get_array_2d_d_value(data->r, col, row);
342  V += r * Az;
343  }
344 
345  G_debug(5, "N_callback_gwflow_3d: called [%i][%i][%i]", depth, col, row);
346 
347  /*create the 7 point star entries */
348  mat_pos = N_create_7star(C, W, E, N, S, T, B, V);
349 
350  return mat_pos;
351 }
352 
353 /* *************************************************************** */
354 /* ****************** N_gwflow_3d_calc_water_budget ************** */
355 /* *************************************************************** */
356 /*!
357  * \brief This function computes the water budget of the entire groundwater
358  *
359  * The water budget is calculated for each active and dirichlet cell from
360  * its surrounding neighbours. This is based on the 7 star mass balance
361  * computation of N_callback_gwflow_3d and the gradient of the water heights in
362  * the cells. The sum of the water budget of each active/dirichlet cell must be
363  * near zero due the effect of numerical inaccuracy of cpu's.
364  *
365  * \param gwdata N_gwflow_data3d *
366  * \param geom N_geom_data *
367  * \param budget N_array_3d
368  * \return void
369  *
370  * */
372  N_array_3d *budget)
373 {
374  int z, y, x, stat;
375  double h, hc;
376  double val;
377  double sum;
378  N_data_star *dstar;
379 
380  int rows = data->status->rows;
381  int cols = data->status->cols;
382  int depths = data->status->depths;
383 
384  sum = 0;
385 
386  for (z = 0; z < depths; z++) {
387  for (y = 0; y < rows; y++) {
388  G_percent(y, rows - 1, 10);
389  for (x = 0; x < cols; x++) {
390  stat = (int)N_get_array_3d_d_value(data->status, x, y, z);
391 
392  val = 0.0;
393 
394  if (stat != N_CELL_INACTIVE) { /*all active/dirichlet cells */
395 
396  /* Compute the flow parameter */
397  dstar = N_callback_gwflow_3d(data, geom, x, y, z);
398  /* Compute the gradient in each direction pointing from the
399  * center */
400  hc = N_get_array_3d_d_value(data->phead, x, y, z);
401 
402  if ((int)N_get_array_3d_d_value(data->status, x + 1, y,
403  z) != N_CELL_INACTIVE) {
404  h = N_get_array_3d_d_value(data->phead, x + 1, y, z);
405  val += dstar->E * (hc - h);
406  }
407  if ((int)N_get_array_3d_d_value(data->status, x - 1, y,
408  z) != N_CELL_INACTIVE) {
409  h = N_get_array_3d_d_value(data->phead, x - 1, y, z);
410  val += dstar->W * (hc - h);
411  }
412  if ((int)N_get_array_3d_d_value(data->status, x, y + 1,
413  z) != N_CELL_INACTIVE) {
414  h = N_get_array_3d_d_value(data->phead, x, y + 1, z);
415  val += dstar->S * (hc - h);
416  }
417  if ((int)N_get_array_3d_d_value(data->status, x, y - 1,
418  z) != N_CELL_INACTIVE) {
419  h = N_get_array_3d_d_value(data->phead, x, y - 1, z);
420  val += dstar->N * (hc - h);
421  }
422  if ((int)N_get_array_3d_d_value(data->status, x, y,
423  z + 1) != N_CELL_INACTIVE) {
424  h = N_get_array_3d_d_value(data->phead, x, y, z + 1);
425  val += dstar->T * (hc - h);
426  }
427  if ((int)N_get_array_3d_d_value(data->status, x, y,
428  z - 1) != N_CELL_INACTIVE) {
429  h = N_get_array_3d_d_value(data->phead, x, y, z - 1);
430  val += dstar->B * (hc - h);
431  }
432  sum += val;
433 
434  G_free(dstar);
435  }
436  else {
438  }
439  N_put_array_3d_d_value(budget, x, y, z, val);
440  }
441  }
442  }
443 
444  if (fabs(sum) < 0.0000000001)
445  G_message(_("The total sum of the water budget: %g\n"), sum);
446  else
447  G_warning(_("The total sum of the water budget is significantly larger "
448  "then 0: %g\n"),
449  sum);
450 
451  return;
452 }
453 
454 /* *************************************************************** */
455 /* ****************** N_callback_gwflow_2d *********************** */
456 /* *************************************************************** */
457 /*!
458  * \brief This callback function creates the mass balance of a 5 point star
459  *
460  * The mass balance is based on the common groundwater flow equation:
461  *
462  * \f[Ss \frac{\partial h}{\partial t} = \nabla {\bf K} \nabla h + q \f]
463  *
464  * This equation is discretizised with the finite volume method in two
465  * dimensions.
466  *
467  * \param gwdata N_gwflow_data2d *
468  * \param geom N_geom_data *
469  * \param col int
470  * \param row int
471  * \return N_data_star *
472  *
473  * */
474 N_data_star *N_callback_gwflow_2d(void *gwdata, N_geom_data *geom, int col,
475  int row)
476 {
477  double T_e = 0, T_w = 0, T_n = 0, T_s = 0;
478  double z_e = 0, z_w = 0, z_n = 0, z_s = 0;
479  double dx, dy, Az;
480  double hc_x, hc_y;
481  double z, top;
482  double hc_xw, hc_yn;
483  double z_xw, z_yn;
484  double hc_xe, hc_ys;
485  double z_xe, z_ys;
486  double hc, hc_start;
487  double Ss, r, q;
488  double C, W, E, N, S, V;
489  N_gwflow_data2d *data;
490  N_data_star *mat_pos;
491  double river_vect = 0; /*entry in vector */
492  double river_mat = 0; /*entry in matrix */
493  double drain_vect = 0; /*entry in vector */
494  double drain_mat = 0; /*entry in matrix */
495 
496  /*cast the void pointer to the right data structure */
497  data = (N_gwflow_data2d *)gwdata;
498 
499  dx = geom->dx;
500  dy = geom->dy;
501  Az = N_get_geom_data_area_of_cell(geom, row);
502 
503  /*read the data from the arrays */
504  hc_start = N_get_array_2d_d_value(data->phead_start, col, row);
505  hc = N_get_array_2d_d_value(data->phead, col, row);
506  top = N_get_array_2d_d_value(data->top, col, row);
507 
508  /* Inner sources */
509  q = N_get_array_2d_d_value(data->q, col, row);
510 
511  /* storativity or porosity of current cell face [-] */
512  Ss = N_get_array_2d_d_value(data->s, col, row);
513  /* recharge */
514  r = N_get_array_2d_d_value(data->r, col, row) * Az;
515 
516  if (hc > top) { /*If the aquifer is confined */
517  z = N_get_array_2d_d_value(data->top, col, row) -
518  N_get_array_2d_d_value(data->bottom, col, row);
519  z_xw = N_get_array_2d_d_value(data->top, col - 1, row) -
520  N_get_array_2d_d_value(data->bottom, col - 1, row);
521  z_xe = N_get_array_2d_d_value(data->top, col + 1, row) -
522  N_get_array_2d_d_value(data->bottom, col + 1, row);
523  z_yn = N_get_array_2d_d_value(data->top, col, row - 1) -
524  N_get_array_2d_d_value(data->bottom, col, row - 1);
525  z_ys = N_get_array_2d_d_value(data->top, col, row + 1) -
526  N_get_array_2d_d_value(data->bottom, col, row + 1);
527  }
528  else { /* the aquifer is unconfined */
529 
530  /* If the aquifer is unconfied use an explicit scheme to solve
531  * the nonlinear equation. We use the phead from the first iteration */
532  z = N_get_array_2d_d_value(data->phead, col, row) -
533  N_get_array_2d_d_value(data->bottom, col, row);
534  z_xw = N_get_array_2d_d_value(data->phead, col - 1, row) -
535  N_get_array_2d_d_value(data->bottom, col - 1, row);
536  z_xe = N_get_array_2d_d_value(data->phead, col + 1, row) -
537  N_get_array_2d_d_value(data->bottom, col + 1, row);
538  z_yn = N_get_array_2d_d_value(data->phead, col, row - 1) -
539  N_get_array_2d_d_value(data->bottom, col, row - 1);
540  z_ys = N_get_array_2d_d_value(data->phead, col, row + 1) -
541  N_get_array_2d_d_value(data->bottom, col, row + 1);
542  }
543 
544  /*geometrical mean of cell height */
545  if (z_w > 0 || z_w < 0 || z_w == 0)
546  z_w = N_calc_arith_mean(z_xw, z);
547  else
548  z_w = z;
549  if (z_e > 0 || z_e < 0 || z_e == 0)
550  z_e = N_calc_arith_mean(z_xe, z);
551  else
552  z_e = z;
553  if (z_n > 0 || z_n < 0 || z_n == 0)
554  z_n = N_calc_arith_mean(z_yn, z);
555  else
556  z_n = z;
557  if (z_s > 0 || z_s < 0 || z_s == 0)
558  z_s = N_calc_arith_mean(z_ys, z);
559  else
560  z_s = z;
561 
562  /*get the surrounding permeabilities */
563  hc_x = N_get_array_2d_d_value(data->hc_x, col, row);
564  hc_y = N_get_array_2d_d_value(data->hc_y, col, row);
565  hc_xw = N_get_array_2d_d_value(data->hc_x, col - 1, row);
566  hc_xe = N_get_array_2d_d_value(data->hc_x, col + 1, row);
567  hc_yn = N_get_array_2d_d_value(data->hc_y, col, row - 1);
568  hc_ys = N_get_array_2d_d_value(data->hc_y, col, row + 1);
569 
570  /* calculate the transmissivities */
571  T_w = N_calc_harmonic_mean(hc_xw, hc_x) * z_w;
572  T_e = N_calc_harmonic_mean(hc_xe, hc_x) * z_e;
573  T_n = N_calc_harmonic_mean(hc_yn, hc_y) * z_n;
574  T_s = N_calc_harmonic_mean(hc_ys, hc_y) * z_s;
575 
576  /* Compute the river leakage, this is an explicit method
577  * Influent and effluent flow is computed.
578  */
579  if (data->river_leak &&
580  (N_get_array_2d_d_value(data->river_leak, col, row) != 0) &&
581  N_get_array_2d_d_value(data->river_bed, col, row) <= top) {
582  /* Groundwater surface is above the river bed */
583  if (hc > N_get_array_2d_d_value(data->river_bed, col, row)) {
584  river_vect = N_get_array_2d_d_value(data->river_head, col, row) *
585  N_get_array_2d_d_value(data->river_leak, col, row);
586  river_mat = N_get_array_2d_d_value(data->river_leak, col, row);
587  } /* Groundwater surface is below the river bed */
588  else if (hc < N_get_array_2d_d_value(data->river_bed, col, row)) {
589  river_vect = (N_get_array_2d_d_value(data->river_head, col, row) -
590  N_get_array_2d_d_value(data->river_bed, col, row)) *
591  N_get_array_2d_d_value(data->river_leak, col, row);
592  river_mat = 0;
593  }
594  }
595 
596  /* compute the drainage, this is an explicit method
597  * Drainage is only enabled, if the drain bed is lower the groundwater
598  * surface
599  */
600  if (data->drain_leak &&
601  (N_get_array_2d_d_value(data->drain_leak, col, row) != 0) &&
602  N_get_array_2d_d_value(data->drain_bed, col, row) <= top) {
603  if (hc > N_get_array_2d_d_value(data->drain_bed, col, row)) {
604  drain_vect = N_get_array_2d_d_value(data->drain_bed, col, row) *
605  N_get_array_2d_d_value(data->drain_leak, col, row);
606  drain_mat = N_get_array_2d_d_value(data->drain_leak, col, row);
607  }
608  else if (hc <= N_get_array_2d_d_value(data->drain_bed, col, row)) {
609  drain_vect = 0;
610  drain_mat = 0;
611  }
612  }
613 
614  /*mass balance center cell to western cell */
615  W = -1 * T_w * dy / dx;
616  /*mass balance center cell to eastern cell */
617  E = -1 * T_e * dy / dx;
618  /*mass balance center cell to northern cell */
619  N = -1 * T_n * dx / dy;
620  /*mass balance center cell to southern cell */
621  S = -1 * T_s * dx / dy;
622 
623  /*the diagonal entry of the matrix */
624  C = -1 *
625  (W + E + N + S - Az * Ss / data->dt - river_mat * Az - drain_mat * Az);
626 
627  /*the entry in the right side b of Ax = b */
628  V = (q + hc_start * Az * Ss / data->dt) + r + river_vect * Az +
629  drain_vect * Az;
630 
631  G_debug(5, "N_callback_gwflow_2d: called [%i][%i]", row, col);
632 
633  /*create the 5 point star entries */
634  mat_pos = N_create_5star(C, W, E, N, S, V);
635 
636  return mat_pos;
637 }
638 
639 /* *************************************************************** */
640 /* ****************** N_gwflow_2d_calc_water_budget ************** */
641 /* *************************************************************** */
642 /*!
643  * \brief This function computes the water budget of the entire groundwater
644  *
645  * The water budget is calculated for each active and dirichlet cell from
646  * its surrounding neighbours. This is based on the 5 star mass balance
647  * computation of N_callback_gwflow_2d and the gradient of the water heights in
648  * the cells. The sum of the water budget of each active/dirichlet cell must be
649  * near zero due the effect of numerical inaccuracy of cpu's.
650  *
651  * \param gwdata N_gwflow_data2d *
652  * \param geom N_geom_data *
653  * \param budget N_array_2d
654  * \return void
655  *
656  * */
658  N_array_2d *budget)
659 {
660  int y, x, stat;
661  double h, hc;
662  double val;
663  double sum;
664  N_data_star *dstar;
665 
666  int rows = data->status->rows;
667  int cols = data->status->cols;
668 
669  sum = 0;
670 
671  for (y = 0; y < rows; y++) {
672  G_percent(y, rows - 1, 10);
673  for (x = 0; x < cols; x++) {
674  stat = N_get_array_2d_c_value(data->status, x, y);
675 
676  val = 0.0;
677 
678  if (stat != N_CELL_INACTIVE) { /*all active/dirichlet cells */
679 
680  /* Compute the flow parameter */
681  dstar = N_callback_gwflow_2d(data, geom, x, y);
682  /* Compute the gradient in each direction pointing from the
683  * center */
684  hc = N_get_array_2d_d_value(data->phead, x, y);
685 
686  if ((int)N_get_array_2d_d_value(data->status, x + 1, y) !=
687  N_CELL_INACTIVE) {
688  h = N_get_array_2d_d_value(data->phead, x + 1, y);
689  val += dstar->E * (hc - h);
690  }
691  if ((int)N_get_array_2d_d_value(data->status, x - 1, y) !=
692  N_CELL_INACTIVE) {
693  h = N_get_array_2d_d_value(data->phead, x - 1, y);
694  val += dstar->W * (hc - h);
695  }
696  if ((int)N_get_array_2d_d_value(data->status, x, y + 1) !=
697  N_CELL_INACTIVE) {
698  h = N_get_array_2d_d_value(data->phead, x, y + 1);
699  val += dstar->S * (hc - h);
700  }
701  if ((int)N_get_array_2d_d_value(data->status, x, y - 1) !=
702  N_CELL_INACTIVE) {
703  h = N_get_array_2d_d_value(data->phead, x, y - 1);
704  val += dstar->N * (hc - h);
705  }
706 
707  sum += val;
708 
709  G_free(dstar);
710  }
711  else {
713  }
714  N_put_array_2d_d_value(budget, x, y, val);
715  }
716  }
717 
718  if (fabs(sum) < 0.0000000001)
719  G_message(_("The total sum of the water budget: %g\n"), sum);
720  else
721  G_warning(_("The total sum of the water budget is significantly larger "
722  "then 0: %g\n"),
723  sum);
724 
725  return;
726 }
#define N_CELL_INACTIVE
Definition: N_pde.h:30
double N_calc_arith_mean(double a, double b)
Calculate the arithmetic mean of values a and b.
Definition: n_tools.c:31
double N_calc_harmonic_mean(double a, double b)
Calculate the harmonical mean of values a and b.
Definition: n_tools.c:115
#define NULL
Definition: ccmath.h:32
void G_percent(long, long, int)
Print percent complete messages.
Definition: percent.c:61
void G_free(void *)
Free allocated memory.
Definition: gis/alloc.c:150
#define G_calloc(m, n)
Definition: defs/gis.h:95
void G_warning(const char *,...) __attribute__((format(printf
void G_message(const char *,...) __attribute__((format(printf
int G_debug(int, const char *,...) __attribute__((format(printf
void Rast_set_null_value(void *, int, RASTER_MAP_TYPE)
To set one or more raster values to null.
Definition: null_val.c:98
#define N
Definition: e_intersect.c:926
#define _(str)
Definition: glocale.h:10
CELL N_get_array_2d_c_value(N_array_2d *data, int col, int row)
Returns the value of type CELL at position col, row.
Definition: n_arrays.c:314
void N_free_array_3d(N_array_3d *data)
Release the memory of a N_array_3d.
Definition: n_arrays.c:774
DCELL N_get_array_2d_d_value(N_array_2d *data, int col, int row)
Returns the value of type DCELL at position col, row.
Definition: n_arrays.c:380
N_array_3d * N_alloc_array_3d(int cols, int rows, int depths, int offset, int type)
Allocate memory for a N_array_3d data structure.
Definition: n_arrays.c:719
N_array_2d * N_alloc_array_2d(int cols, int rows, int offset, int type)
Allocate memory for a N_array_2d data structure.
Definition: n_arrays.c:75
void N_free_array_2d(N_array_2d *data)
Release the memory of a N_array_2d structure.
Definition: n_arrays.c:132
void N_put_array_3d_d_value(N_array_3d *data, int col, int row, int depth, double value)
Writes a double value to the N_array_3d struct at position col, row, depth.
Definition: n_arrays.c:1148
double N_get_array_3d_d_value(N_array_3d *data, int col, int row, int depth)
This function returns the value of type float at position col, row, depth.
Definition: n_arrays.c:979
void N_put_array_2d_d_value(N_array_2d *data, int col, int row, DCELL value)
Writes a DCELL value to the N_array_2d struct at position col, row.
Definition: n_arrays.c:576
double N_get_geom_data_area_of_cell(N_geom_data *geom, int row)
Get the areay size in square meter of one cell (x*y) at row.
Definition: n_geom.c:196
void N_gwflow_3d_calc_water_budget(N_gwflow_data3d *data, N_geom_data *geom, N_array_3d *budget)
This function computes the water budget of the entire groundwater.
Definition: n_gwflow.c:371
N_data_star * N_callback_gwflow_2d(void *gwdata, N_geom_data *geom, int col, int row)
This callback function creates the mass balance of a 5 point star.
Definition: n_gwflow.c:474
void N_gwflow_2d_calc_water_budget(N_gwflow_data2d *data, N_geom_data *geom, N_array_2d *budget)
This function computes the water budget of the entire groundwater.
Definition: n_gwflow.c:657
N_gwflow_data2d * N_alloc_gwflow_data2d(int cols, int rows, int river, int drain)
Allocate memory for the groundwater calculation data structure in 2 dimensions.
Definition: n_gwflow.c:149
void N_free_gwflow_data3d(N_gwflow_data3d *data)
Release the memory of the groundwater flow data structure in three dimensions.
Definition: n_gwflow.c:91
N_gwflow_data3d * N_alloc_gwflow_data3d(int cols, int rows, int depths, int river, int drain)
Allocate memory for the groundwater calculation data structure in 3 dimensions.
Definition: n_gwflow.c:39
N_data_star * N_callback_gwflow_3d(void *gwdata, N_geom_data *geom, int col, int row, int depth)
This callback function creates the mass balance of a 7 point star.
Definition: n_gwflow.c:265
void N_free_gwflow_data2d(N_gwflow_data2d *data)
Release the memory of the groundwater flow data structure in two dimensions.
Definition: n_gwflow.c:200
N_data_star * N_create_7star(double C, double W, double E, double N, double S, double T, double B, double V)
allocate and initialize a 7 point star data structure
N_data_star * N_create_5star(double C, double W, double E, double N, double S, double V)
allocate and initialize a 5 point star data structure
#define W
Definition: ogsf.h:143
double r
Definition: r_raster.c:39
#define DCELL_TYPE
Definition: raster.h:13
#define CELL_TYPE
Definition: raster.h:11
int cols
Definition: N_pde.h:134
int rows
Definition: N_pde.h:134
int rows
Definition: N_pde.h:177
int depths
Definition: N_pde.h:177
int cols
Definition: N_pde.h:177
Matrix entries for a mass balance 5/7/9 star system.
Definition: N_pde.h:295
double E
Definition: N_pde.h:298
double S
Definition: N_pde.h:298
double W
Definition: N_pde.h:298
double T
Definition: N_pde.h:300
double N
Definition: N_pde.h:298
double B
Definition: N_pde.h:302
Geometric information about the structured grid.
Definition: N_pde.h:101
double dx
Definition: N_pde.h:108
int depths
Definition: N_pde.h:114
double dy
Definition: N_pde.h:109
double dz
Definition: N_pde.h:110
This data structure contains all data needed to compute the groundwater mass balance in two dimension...
Definition: N_gwflow.h:65
N_array_2d * hc_y
Definition: N_gwflow.h:69
N_array_2d * nf
Definition: N_gwflow.h:73
N_array_2d * top
Definition: N_gwflow.h:84
N_array_2d * drain_leak
Definition: N_gwflow.h:81
N_array_2d * bottom
Definition: N_gwflow.h:85
N_array_2d * phead_start
Definition: N_gwflow.h:67
N_array_2d * river_leak
Definition: N_gwflow.h:76
N_array_2d * s
Definition: N_gwflow.h:72
N_array_2d * hc_x
Definition: N_gwflow.h:68
N_array_2d * r
Definition: N_gwflow.h:71
N_array_2d * drain_bed
Definition: N_gwflow.h:82
N_array_2d * q
Definition: N_gwflow.h:70
N_array_2d * river_bed
Definition: N_gwflow.h:78
N_array_2d * river_head
Definition: N_gwflow.h:77
N_array_2d * phead
Definition: N_gwflow.h:66
N_array_2d * status
Definition: N_gwflow.h:87
This data structure contains all data needed to compute the groundwater mass balance in three dimensi...
Definition: N_gwflow.h:34
N_array_3d * phead
Definition: N_gwflow.h:35
N_array_3d * hc_z
Definition: N_gwflow.h:39
N_array_3d * phead_start
Definition: N_gwflow.h:36
N_array_3d * hc_x
Definition: N_gwflow.h:37
N_array_3d * drain_leak
Definition: N_gwflow.h:51
N_array_3d * status
Definition: N_gwflow.h:54
N_array_3d * drain_bed
Definition: N_gwflow.h:52
N_array_3d * river_bed
Definition: N_gwflow.h:48
N_array_3d * river_head
Definition: N_gwflow.h:47
N_array_3d * s
Definition: N_gwflow.h:42
N_array_2d * r
Definition: N_gwflow.h:41
N_array_3d * q
Definition: N_gwflow.h:40
N_array_3d * hc_y
Definition: N_gwflow.h:38
N_array_3d * nf
Definition: N_gwflow.h:43
N_array_3d * river_leak
Definition: N_gwflow.h:46
#define x